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Abstract

A comprehensive analysis is performed to investigate the e�ect of the oscillating ¯ow of gap ¯uid on the shuttle heat transfer in

reciprocating expanders. For a sinusoidal motion of displacer over cylinder having an axial temperature gradient, a new exact

expression for shuttle heat transfer is derived from the analytical solution of the velocity and the temperature distributions for the

gap ¯uid and the two walls. Through a rigorous analysis, the most signi®cant parameter in the shuttle phenomena is proven to be the

ratio of the inertial force to the viscous force in the oscillating ¯uid. For the ratio values smaller than unity, the predicted shuttle heat

transfer from the present expression is in good agreement with the previously published results. For large ratios, however, a notable

discrepancy exists between the results of the present analysis and the previous investigations. The reason for this discrepancy is that

the wall-to-wall heat ¯ux is not in phase with the temperature di�erence because of the ¯uid motion that was not included in the

previous investigations. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Reciprocating expander is a key component in many
cryogenic refrigerators such as Stirling, Gi�ord±
McMahon, Vuilleumier and Claude cycle coolers. When
an axial temperature gradient exists along the cylinder
wall, the reciprocating motion of the displacer causes an
extra heat transfer from the high to the low temperature
region in addition to the wall conduction. This motional
heat transfer is usually referred to as shuttle heat
transfer. Since the heat transfer always results in a loss
of refrigeration, it is important to accurately estimate
and reduce the amount of shuttle heat transfer.

The basic principle of the shuttle heat transfer is ex-
plained in Fig. 1. The dot at the center of the displacer
indicates its relative axial position with respect to the
cylinder. While the displacer is moving towards the high
temperature side from the center of the stroke, the dis-
placer wall has a lower temperature than the cylinder
wall of the same axial position so that heat is transferred
from the cylinder to the displacer. Similarly, while the

displacer is moving towards the low temperature side,
the displacer wall has a higher temperature and heat is
transferred from the displacer to the cylinder. As the
cycle proceeds, the displacer repeatedly receives heat
from the higher temperature region and rejects heat to
the lower temperature region, which creates a net
enthalpy ¯ow from the high to the low temperature di-
rection. In the periodic steady state, the cyclic average of
the enthalpy ¯ow at a ®xed axial position is the shuttle
heat transfer.

Several mathematical expressions have been intro-
duced to date to estimate the amount of the shuttle heat
transfer. Zimmerman and Longthworth [1] derived an
expression based upon the assumptions that the walls of
the displacer and the cylinder have an in®nite heat ca-
pacity and that the displacer has a square-wave motion.
Rios [2] presented an approximate solution by lineari-
zation and application of Fourier series. Radebaugh and
Zimmerman [3] developed an approximate solution by
heat conduction analysis of a semi-in®nite plate with a
sinusoidal surface temperature distribution. In their
analysis, the thermal resistance of gas in the gap between
the walls was initially neglected in the calculation of the
wall temperatures, and was included later by an ap-
proximate method. Several years ago, Nishio et al. [4]
reported an approximate solution by including the
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temperature oscillations for both of the displacer and
the cylinder. In their work, a thermal resistance model
was employed and the analytical results were compared
with the corresponding numerical simulation results.
Baik and Chang published an exact mathematical so-
lution [5] for the shuttle heat transfer by including the
wall properties of both the displacer and cylinder, and
also presented in a simple and useful form of the ex-
pression [6].

In spite of the series of progress, the previous esti-
mations of the shuttle heat transfer may not be com-
pletely reliable, mainly because they are all based upon
the assumption that the wall-to-wall heat transfer is di-
rectly proportional to the di�erence between the two
surface temperatures. Since the conventional concept of
the convection heat transfer is developed for a steady
¯ow of ¯uid, the assumption may be true for relatively

low speed machines. In cases involving fast oscillations,
however, the wall-to-wall heat transfer may not be in
phase with the temperature di�erence, depending upon
the rate of momentum and heat di�usion across the
viscous ¯uid in the gap. Recently, Naka et al. [7] in-
cluded the gap ¯uid motion and the end e�ect of a dis-
placer in their numerical analysis using a commercial
software. Their result was in good agreement with the
existing results, since they dealt with only a low fre-
quency case.

The proposed analysis attempts to investigate the ef-
fect of the oscillating ¯ow of the gap ¯uid and obtain a
more accurate estimate of the shuttle heat transfer. To
achieve this goal, exact mathematical solutions for the
velocity and temperature distributions in the two solid
walls and the gap ¯uid are obtained, and a functional
expression for the shuttle heat transfer is derived from

Nomenclature

c speci®c heat
D outer diameter of displacer
k thermal conductivity
L length of displacer
Pr Prandtl number, m=a
Q shuttle heat transfer
S stroke of displacer
t time
T temperature
u axial velocity of gap ¯uid
x radial distance from surface
z axial coordinate in stationary reference frame

Z axial coordinate in moving reference frame

Greek letters
a thermal di�usivity, k=qc
d gap clearance between displacer and cylinder
m kinematic viscosity
h complex temperature
q density
x angular velocity of oscillation
W complex constant

Subscripts
1 displacer wall
2 cylinder wall

Fig. 1. Basic principle of shuttle heat transfer.
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the exact solutions. The usefulness of the expression is
evaluated and its physical interpretation is presented.

2. Analysis model

As shown in Fig. 2, the displacer reciprocates over the
cylinder having an axial temperature gradient with an
angular speed x and a stroke S. The stationary axial
coordinate z is measured from the center of the cylinder
and the moving axial coordinate Z is measured from the
center of the displacer. The radial coordinates, x1, x and
x2, are measured from the surface of the cylinder or the
displacer. The subscripts 1 and 2 denote the displacer
and the cylinder, respectively, and the variables without
subscripts represent the gap ¯uid.

For simplicity, the following assumptions are made in
this analysis:
1. The system is in a cyclic steady state with a sinusoidal

motion of the displacer. Therefore the two axial coor-
dinates have the following relation:

z � Z � S
2

cosxt: �1�
2. The axial temperature gradient of the two walls and

the ¯uid in the gap is a constant, �TH ÿ TL�=L. This
condition holds when the material properties do not
vary.

3. The wall thickness of the displacer or the cylinder is
much smaller than the diameter, but greater than
the thermal penetration depth so that the displacer
and the cylinder can be considered as two semi-in®-
nite ¯at plates. The thermal penetration depth was
veri®ed for typical conditions by Baik and Chang [5].

4. The gap ¯uid is Newtonian and oscillated only by the
motion of displacer. The pressure gradient, the com-
pressibility of ¯uid, and the end e�ect of ¯ow are
neglected.

5. The radiation heat transfer is negligible.

These assumptions can be justi®ed in most practical
situations where the shuttle heat transfer is signi®cant. It
should be noted that neither an in®nite heat capacity of
the displacer or cylinder nor a constant heat transfer
coe�cient between two surfaces has been assumed in
this analysis.

3. Velocity distribution of gap ¯uid

The velocity of the gap ¯uid can be determined by the
Navier±Stokes equation for the ¯ow between two par-
allel plates, one of which oscillates sinusoidally, in ac-
cordance with assumptions 1±4. Since the axial velocity
u is independent of the axial position and the radial
velocity is zero, the equation can be reduced [8,9] to

ou t; x� �
ot

� m
o2u t; x� �

ox2
�2�

subject to the non-slip boundary conditions

u t; 0� � � 0;

u t; d� � � ÿxS
2

sinxt:
�3�

This equation can be readily solved by the method of
complex variables, in the same way as the StokesÕ second
problem [8,9]:

u t; x� � � Re
ixS

2

sinh 1� i� �� �����������
x=2m

p �x
h i

sinh 1� i� �� �����������
x=2m

p �d
h i eixt

8<:
9=;; �4�

where i � �������ÿ1
p

and Re denotes the real part of a com-
plex variable. The correctness of Eq. (4) can be veri®ed
by substituting into the governing equation and the
boundary conditions.

It is worthwhile to discuss at this point about the
signi®cance of Eq. (4) in practice. Fig. 3 shows the axial
velocity pro®les at p/6 increment over a half period of
down stroke for two di�erent frequencies of x=2p� 0.5
and 20 Hz. The gap is set at d �0.7 mm [7], and the gap
¯uid is helium at 200 K and 10 atm. The two frequencies
represent approximately the lower and the upper limits
in practical cryocoolers. For 0.5 Hz, the oscillation is so
slow that the viscous force of the ¯uid is dominant over
the inertial force. Therefore the velocity pro®le is almost
linear as in the steady-state solution and the shear stress
distribuation in ¯uid is constant across the gap. On the
contrary, for 20 Hz, the inertial force is signi®cant, and
the ¯uid near the center of the gap may ¯ow in the
opposite direction of the displacer. It is clear form
Eq. (4) that this behavior can be generalized by a di-
mensionless variable, d

��������
x=m

p
, which can be de®ned as

the ratio of the inertial to the viscous force in oscillating
¯ows [10,11].Fig. 2. Coordinates of displacer±cylinder system.
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4. Temperature distribution

The governing equations for the temperature of the
displacer wall, the gap ¯uid and the cylinder wall are

oT1�t; x1; Z�
ot

� a1

o2T1�t; x1; Z�
ox2

1

; �5�

oT �t; x; z�
ot

� u�t; x� oT �t; x; z�
oz

� a
o2T �t; x; z�

ox2
; �6�

oT2�t; x2; z�
ot

� a2

o2T2�t; x2; z�
ox2

2

; �7�

respectively. The axial coordinate, Z, in Eq. (5) is
moving with the displacer, while the axial coordinate, z,
in Eqs. (6) and (7) is stationary. In the second term of
Eq. (6), the axial velocity of the gap ¯uid, u�t; x� is given
by Eq. (4) and the axial temperature gradient is a con-
stant according to assumption 2 even though the tem-
perature may be a function of time and space.

Two boundary conditions, according to assumptions
(2) and (3), are

T1 t;1; Z� � � T0 � TH ÿ TL

L
Z; �8�

T2 t;1; z� � � T0 � TH ÿ TL

L
z; �9�

where T0 is a reference temperature, which is simply
selected as the cylinder temperature at a location with
z � 0 and radially far apart from the surface. It is noted
that the two temperatures from Eqs. (8) and (9) are
identical when z � Z or the displacer is at the center of
the stroke. Four other boundary conditions are ob-
tained from the continuity of temperature and heat ¯ux
at the surfaces:

T1 t; 0; z
�

ÿ S
2

cosxt
�
� T �t; d; z�; �10�

k1

oT1�t; 0; zÿ S
2

cosxt�
ox1

� k
oT �t; d; z�

ox
; �11�

T2�t; 0; z� � T �t; 0; z�; �12�

k2

oT2�t; 0; z�
ox2

� ÿk
oT �t; 0; z�

ox
; �13�

where k1, k, k2 are the thermal conductivities and Z has
been replaced with a function of z and t via Eq. (1). The
initial conditions are not necessary in a cyclic steady
state.

The temperature for the two walls and the gap ¯uid is
found by solving Eqs. (5)±(7) simultaneously with the
boundary conditions (8)±(13), by the method of complex
variables. In this analysis, complex temperatures, h1, h,
h2 are de®ned [12,13] as

T1 � Re�h1�; T � Re�h�; T2 � Re�h2�: �14�
Eqs. (5)±(13) can be expressed in the complex forms by
replacing Ts with hs, and cosxt with eixt. In the second
term of Eq. (6), u�t; x� can be simply replaced with the
complex velocity of Eq. (4), since the axial temperature
gradient is a constant.

If the three unknown complex temperatures are as-
sumed to be

h1�t; x1; z� � T0 � TH ÿ TL

L
z
�
ÿ S

2
eixt

�
� h10�x1�eixt;

�15�

h�t; x; z� � T0 � TH ÿ TL

L
z� h0�x�eixt; �16�

h2�t; x2; z� � T0 � TH ÿ TL

L
z� h20�x2�eixt �17�

and substituted into the governing equations, the eixt

factors drop out and the partial di�erential equations
are reduced to ordinary di�erential equations for h10�x1�,
h0�x� and h20�x2�. A slightly lengthy but straightforward
procedure leads to the exact solution for h10�x1�. When
Pr is not unity

h10�x1� � S
2

TH ÿ TL

L
1ÿW
1ÿ Pr

e
ÿ�1�i� ����x

2a1

p
x1 ; �18�

Fig. 3. Axial velocity pro®les in p=6 increments for half period:

(a) x=2p �0.5 Hz, (b) x=2p �20 Hz.
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where W is a complex constant de®ned as

W � r2 sinh �1
���
� i�

�����
x
2a

r
d

�
� cosh 1�

�
� i�

�����
x
2a

r
d

��
� r1 sinh �1

��
� i�

�����
x
2m

r
d

�
�

�����
Pr
p

cosh �1
�
� i�

�����
x
2m

r
d

��
ÿ

�����
Pr
p ��

sinh �1
��
� i�

�����
x
2m

r
d

�
�1
�
� r1r2�

� sinh �1
�
� i�

�����
x
2a

r
d

�
� r1� � r2�

� cosh 1�
�
� i�

�����
x
2a

r
d

���
: �19�

In Eqs. (18) and (19), three dimensionless parameters,

Pr � m
a
; r1 �

�������������
k1q1c1

kqc

s
; r2 �

�������������
k2q2c2

kqc

s
�20�

represent the thermophysical properties of the gap ¯uid,
the displacer and the cylinder walls. It should be noted
that W is a dimensionless complex function expressed in
terms of only four real parameters, Pr, r1, r2 and
d
��������
x=m

p
, since d

���������
x=a

p � d
��������
x=m

p �����
Pr
p

.
The procedure to verify that the solution satis®es the

set of simultaneous equations can be quite tedious.
However, it is simple to prove that Eq. (15) with Eq. (18)

satis®es Eqs. (5) and (8), since the real part of the ex-
ponent in Eq. (18) is negative. In the special case that
Pr � 1, the solution can be obtained by a method known
as the variation of parameters, which is not presented in
this paper because it is not important in practice.

As described in the following section, the shuttle heat
transfer is derived from the temperature distribution of
the displacer wall. The mathematical expressions for the
temperature distributions of the ¯uid and the cylinder
wall will not be presented here due to a space limitation.
Instead, the temperature pro®les in the gap ¯uid are
graphically shown in Fig. 4 for a half period of down
stroke for two frequencies of x=2p � 0:5 and 20 Hz. The
conditions for this calculation are given in Table 1.
During the half stroke toward the negative z direction,
the temperature increases for most regions as shown in
Fig. 1. The temperature variation at cylinder surface
(x � 0) is very small due to its large heat capacity. For
0.5 Hz, the temperature pro®le is almost linear as in a
steady-state solution and the oscillation of the temper-
ature di�erence between the two surfaces (at x � 0 and
d) is in phase with that of the heat ¯ux at the surfaces.
For 20 Hz, however, the temperature pro®le is not linear
and the temperature di�erence is not proportional to the
heat ¯ux at surfaces. It can be stated that the heat ¯ux at
the displacer surface (at x � d) always leads that at the
cylincer surface(at x � 0) in the phase angle.

5. Shuttle heat transfer

Once the temperature of the displacer wall is ob-
tained, the shuttle heat transfer can now be calculated.
At an arbitrary axial position, the shuttle heat transfer
can be de®ned as the net enthalpy ¯ow rate from the
high to the low temperature side, or in the negative z
direction. A cycle-averaged net enthalpy ¯ow rate of the
displacer wall can be obtained by integrating over a
period and the displacer wall area.

Q � x
2p

Z 2p=x

0

�
Z 1

0

q1c1T1 t; x1; z� � xS
2

sinxt
� �

pDdx1 dt; �21�Fig. 4. Temperature pro®les in p=6 increments for half period:

(a) x=2p �0.5 Hz, (b) x=2p �20 Hz.

Table 1

Speci®cations of shuttle heat transfer system in the sample calculation

Displacer Material ± Bakelite

Outer diameter D 60 mm

Stroke S 32 mm

Cylinder Material ± Stainless steel

Axial temperature

gradient

�TH ÿ TL�=L 1.43 K/mm

Gap Gas ± Helium

Gap clearance d 0.7 mm

Average temperature T0 200 K

Average pressure ± 10 atm
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where the parentheses denotes the velocity of the dis-
placer in the negative z direction as given by Eq. (3) and
pDdx1 denotes the in®nitesimal cross-sectional area of
the displacer wall according to assumption (3). Since the
heat capacity of the gap ¯uid in most practical cases is
negligibly small, its contribution to the shuttle heat
transfer is omitted in Eq. (21). The result of integrating
Eq. (21) is

Q � TH ÿ TL

L
pDS2

8
k1

�������
x

2a1

r
Re 1ÿW� � ÿ Im 1ÿW� �

1ÿ Pr
; �22�

where Re and Im denote the real and the imaginary
parts of the complex number, respectively, and W is
given by Eq. (19). It is noted that Q is independent of z,
since the axial temperature gradient is a constant and
the end e�ect is neglected.

According to Eq. (22), the shuttle heat transfer is
proportional to the axial temperature gradient, the di-
ameter of the displacer, and the square of the stroke. On
the other hand, the dependence on the oscillating fre-
quency, the gap clearance between the two walls, and the
properties of the ¯uid or the walls is rather complicated.
It is interesting to note that the wall thickness of the
displacer or the cylinder is crucial in the axial wall con-
duction, but does not a�ect the shuttle heat transfer given
by Eq. (22), as long as the thickness is greater than the
thermal penetration depth according to assumption 3.

6. Results and discussion

The validity of the new expression for the shuttle heat
transfer, Eq. (22), can be best con®rmed by an experi-
ment. Unfortunately, however, the shuttle loss cannot
be separately measured in a cryocooler and no experi-
mental data are available for comparison. On the other
hand, for the purpose of a quantitative evaluation of the
proposed analysis, the new expression can be compared
with the existing analytical expressions in a speci®c sit-
uation. The materials and the dimensions for this com-
parison are given in Table 1. Most of the contents in
Table 1 are taken from Naka et. al. [7], because they
have presented only a few results of numerical simula-
tion while other analytical expressions can produce nu-
merical data in any case.

Fig. 5 plots the shuttle heat transfer as a function of
oscillating frequency from the previously published re-
sults and the proposed expression, Eq. (22). For
Radebaugh and Zimmerman [3], Nishio et. al. [4] and
Chang and Baik [6], the wall-to-wall heat transfer has
been assumed to be proportional to the temperature
di�erence of the two surfaces. In the coordinate system
of Fig. 2

ÿk1

oT1 t; 0; zÿ S
2

cosxt
ÿ �

ox1

� h T2�t; 0; z�
�

ÿ T1 t; 0; z
�

ÿ S
2

cosxt
��
� k2

oT2�t; 0; z�
ox2

;

�23�
where h is the convection heat transfer coe�cient that
has a constant value

h � k
d
: �24�

Radebaugh and Zimmerman [3] have over-estimated the
shuttle heat transfer at high frequencies, as they have
assumed an in®nite heat capacity hence no temperature
oscillation of the cylinder wall. A fairly good agreement
is observed between the results of Nishio et al. [4] and
Chang and Baik. [6] The minor di�erence is due to the
assumption imposed by Nishio et al. that the phase shift
of the surface temperature oscillation is negligible in
their approximate thermal resistance model. The nu-
merical result from Naka et. al. [7] indicates a slightly
lower value at 1 Hz, as they have included the axial end
e�ect of the displacer motion and assumed that the he-
lium gas is at the atmospheric pressure. Owing to ex-
actness and simplicity, the expression from Chang and
Baik [6]

Q � TH ÿ TL

L
pDS2

8

� 1

k1

������
a1

2x

r�
� 1

k2

������
a2

2x

r
� d

k

��
1

k1

������
a1

2x

r� 
� 1

k2

������
a2

2x

r �2

� 1

k1

������
a1

2x

r�
� 1

k2

������
a2

2x

r
� d

k

�2
!

�25�

has been the most useful one so far as Eqs. (23) and (24)
hold true. It should be recognized that Eq. (22) contains
only two more variables, m and qc of the ¯uid, than
Eq. (25), noting that Pr � m=a and a � k=qc. Obviously,
the kinematic viscosity, m, and the heat capacity, qc, are

Fig. 5. Comparison of the current and existing expressions for shuttle

heat transfer as a function of oscillating frequency.
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critical in determining the velocity and the temperature
pro®les of the gap ¯uid, as illustrated in Figs. 3 and 4,
respectively.

The shuttle heat transfer from Eq. (22) shows an ac-
curate agreement with Eq. (25) at frequencies lower than
1 Hz. As the frequency increases, however, it decreases
to a considerably lower value and then increases again
to higher values compared to the existing results. This
seemingly unusual behavior results from the obvious
fact that Eq. (23) is not true any more at higher fre-
quencies. It should be emphasized again that the new
expression is based upon the exact solution satisfying
the energy equations and the boundary conditions and
that the data have been generated from a single math-
ematical expression that coincides with Chang et al. [6]
at low frequencies.

As demonstrated in Fig. 4, the surface heat ¯ux is not
in phase with the temperature di�erence at relatively
high frequencies. Therefore, Eq. (23) cannot be used
irrespective of the value of the heat transfer coe�cient h.
In order to illustrate how the phase shift a�ects the
shuttle heat transfer, the locus of the complex temper-
ature at the displacer surface, h10�0�, is plotted on the
complex plane of Fig. 6 as the frequency is varied. As
noticed in Eqs. (18) and (22), the shuttle heat transfer is
proportional to the di�erence of the real and imaginary
parts of the complex temperature so that the straight
lines indicate the points of the same shuttle heat trans-
fer. As the frequency increases, the complex temperature
asymptotically approaches the point marked by a hol-
low circle in which the phase angle is ÿp=4 and the
shuttle heat transfer is approximately 5.8 W, as given by
Chang and Baik [6]. The exact complex number from
Eq. (18) coincides with Chang and Baik for up to 1 Hz,
but makes a sharp clockwise turn and runs away as the
frequency is farther increased. The reason for this be-
havior is that the phase angle of the temperature oscil-
lation at the displacer surface is signi®cantly in¯uenced
by the gap ¯ow at high frequencies as the inertial force
of ¯uid becomes dominant over the viscous force.

In practice, the key point of the new expression is that
the shuttle heat transfer is not a monotonically in-
creasing function of the oscillating frequency, but has a
local minimum at about 15 Hz in this case. The result
can be generalized by employing the method of dimen-
sional analysis. As discussed in Eq. (22), the shuttle heat
transfer is associated with four dimensionless variables,
Pr, r1, r2 and d

��������
x=m

p
, in addition to the explicit vari-

ables such as the axial temperature gradient, the diam-
eter or stroke of the displacer. Since the ®rst three
dimensionless variables are determined by the ¯uid or
the wall materials, the shuttle heat transfer can be
minimized by designing an appropriate value of d

��������
x=m

p
.

It may well be predicted for the typical combination of
helium (gap ¯uid), bakelite (displacer) and stainless steel
(cylinder) that the optimum value for d

��������
x=m

p
is

approximately 2.7.

7. Conclusions

An analytical expression is presented for the shuttle
heat transfer by taking into account the oscillating ¯ow
of the gap ¯uid. It can be concluded from the exact
expression that the gap ¯ow does a�ect the shuttle
phenomena when the inertial force in the oscillating ¯ow
is relatively signi®cant over the viscous force. In most of
practical operating conditions, the predicted shuttle heat
transfer will be less than the previously published value,
depending upon the ratio of the two forces. The result of
this paper is readily applicable to many cryogenic sys-
tems in which the shuttle heat transfer is signi®cant.
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