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A theoretical optimization is performed for the conduction-cooling method of high
Tc superconductor (HTS) current leads, which can be applied to the superconducting
systems cooled directly by cryogenic refrigerators without liquid helium. The current
lead is a series combination of a normal metal conductor at the warmer part and a
HTS at the colder part, and is cooled by a contact with distributed or staged refriger-
ators instead of boil-off helium gas. An analytical method is developed to derive a
mathematical expression for the required refrigerator power. By incorporating the criti-
cal characteristics of the HTS, it is demonstrated that there exist unique optimal values
for the current density of HTS and the joint temperature of the two parts to minimize
the total refrigerator power per unit current, for a given length of the HTS. As results
of the study, the absolute minimum in the refrigerator power per unit current is
presented as a thermodynamic limit and the leads cooled by a two-stage refrigerator
are theoretically optimized. Some aspects in practical design are also discussed with
a new and useful graphical method. © 1998 Elsevier Science Ltd. All rights reserved
Keywords: A. High Tc superconductors; B. thermodynamics; F. current leads

Nomenclature W Refrigerator, power, W

A Cross-sectional area of current lead, cm?

FOM  Figure of merit of refrigerator Greek letters

1 Current, A A Lagrange multiplier

J Current density, A/cm? p Electrical resistivity, {)-m

Je Critical current density, A/cm? T Dummy variable in definite integral

Jeo Critical current density at 0 K, A/cm?

L Length of current lead, cm .

L, Lorentz number, W-Q/m’ Subscripts

k Thermal conductivity, W/m-K 1 HTS part of current lead

(4] Heat transfer rate or heat current, W 2 Metal part of current lead

Quen Heat generation rate, W H Warm end

O Cooling rate by refrigerator, W J Joint of HTS and metal parts

T Temperature, K L Cold end

Te Critical temperature, K min Minimum

U Unit step function opt Optimum

High Tc superconductors (HTS) are the best materials
to minimize refrigeration power for the current leads in
superconducting systems, mainly because they are perfect
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electrical conductors and have much lower thermal conduc-
tivity than the normal metals. During the past several years,
a number of studies'* have been performed to prove suc-
cessfully that the cooling load or the electrical power for
the refrigeration of the leads could be reduced significantly
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by replacing the lower temperature part of the conventional
metallic lead with the HTS current leads. This so-called
binary or hybrid current lead is a series combination of a
normal metal conductor as a high temperature part and HTS
as a lower temperature part. The cooling method for the
binary leads could be quiet different from the standard
helium-vapor-cooling of the conventional metallic lead,
depending on how the liquid cryogens and/or the cry-
ocoolers are employed'.

Recent progress in the development of 4 K Gifford-
McMahon refrigerators’ has raised the possibility of the
liquid-free or the refrigerator-cooled superconducting mag-
nets'”''. Since there is no liquid cryogen in those supercon-
ducting systems, the current leads should be conduction-
cooled in vacuum by contact with refrigerators. The heat
would then be removed from the lead at one or more inter-
mediate axial locations as well as at the cold end. The
present authors think that the feasibility of the conduction-
cooled HTS current lead has been demonstrated by the
recent construction and operation of several prototypes'*!"
and the next crucial step towards the practical application
could be the development of energy-efficient current leads.

The cooling of the HTS leads without the boil-off helium
gas has been partly considered in some of the previous
publications' . Most of these research works are, however,
related to the design or the analysis for the HTS leads
whose ends were cooled by liquid nitrogen or liquid helium
and still might not provide enough information on the opti-
mal cooling scheme for the liquid-free HTS leads. For con-
ventional metallic leads, the conduction-cooling method
was examined and completely optimized by Hilal'®. In that
theoretical work, Hilal showed by the method of calculus
of variations that the refrigerator power could reach an
absolute minimum with optimally distributed Carnot
refrigerators and optimally sized leads. A few years before
Hilal's work, Bejan and Smith'® derived an absolute mini-
mum of the refrigerator power required to cool a given
geometry of mechanical supports for cryogenic apparatus.
In a thermal point of view, the mechanical supports are
quite similar to the HTS current leads that do not generate
heat in a superconducting state.

The present study investigates the optimal conditions in
the conduction-cooling method for the binary current leads,
by combining the two optimization methods mentioned
above. The first thermodynamic optimization includes the
distribution of the refrigeration along the axis of a lead and
the dimensions of the lead to minimize the refrigeration
work as a thermodynamic limit. In addition, the optimiz-
ation for a two-stage conduction-cooling is emphasized
because of its practical importance.

Absolute minimum of refrigerator power

The most efficient conduction-cooling of a binary current
is schematically shown in Figure 1. The binary lead is com-
posed of an HTS part (denoted by subscript 1) on the cold
end and a normal metal part (denoted by subscript 2) on
the warm end. It is assumed that an infinite number of Car-
not or reversible refrigerators are distributed along the axis
of the lead and remove heat by conduction. The heat current
through the lead from the warm to the cold end, Q, is
defined as positive. The heat at the cold end and the cooling
load at the joint are denoted by @, and @), respectively.
Q, is the difference between the heat from the metal at the
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Figure 1 Binary current lead cooled by distributed Carnot
refrigerators

joint, O, and the heat to the HTS at the joint, Q,. In order
to consider a thermodynamic limit, it is further assumed
that there is no heat generation in the HTS or at its contact
surfaces and that the end temperatures are fixed.

The total power required for the distributed refrigeration
can be expressed as

W = (T” l) T l>d 1

rell — TL - 'QL + ( T - . Qrcl' ( )
TH ] ) TH >

+ TJ - / 'QJ + T -1 'ercl’

Ty

where T,, T, and Ty are the temperatures at the cold end,
the joint and the warm end. respectively, and 7} is assumed
to be identical to room-temperature at which the reversible
refrigerators reject heat.

Since the refrigerator should remove the increment in the
heat current for an infinitesimal length of the HTS lead as
shown in Figure I or dQ,., = dQ, the second term of the
right-handed side in Equation (1) can be integrated by
parts.

Ty _(TH Y:H_ :
[ (- oo

For an infinitesimal length of the metal lead shown in
Figure [, the energy balance equation can be written as
dQ .. =dQ + dQ,.,, where dQ,., is the heat generation rate
over the length. By combining the one-dimensional equa-
tions for the Fourier’s heat conduction and the Ohm’s heat
generation, it can be simply shown that

_ pkoI?

d gen T dT 3
Q. 0 (3)

where p and k are the electrical resistivity and the thermal
conductivity, respectively and / is the current that the lead
is carrying. The fourth term in Equation (1) is similarly
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integrated by parts, with the energy balance equation and
Equation (3).

1" Ty

Tu ‘ _ TH Q
j(T - 1)'dQ""“'(TJ - 1)-Q3+THJ - d7r (4)

7 7
Ty
T \ pokaI?
+J( ”—1)”” dr
r ;o
7y
Substituting Equations (2) and (4) into Equation (1),
Tu T
0 T, pokol?
W.-¢|-=Tnf 72T+ TH—l 0 dT (5)
. 7

since O, = Q> — @Q,. Equation (5) expresses the Carnot
refrigerator power for arbitrary heat current distributions,
Q(T), in the binary lead. It should be noted that the first
term of Equation (5) is integrated for the entire lead, while
the second term is integrated only for the metal part since
it accounts for the cooling of the generated heat.

The minimization of the refrigerator power, Equation
(5), should be performed subject to the condition that the
geometry of the HTS remains constant. The geometric con-
straint can be put into an integral form.

7y

L, k,

A~ j dTr (6)
s

where L and A are the length and the cross-sectional area

of the lead, respectively. The variational problem of minim-

izing Equation (5) subject to Equation (6) is identical to

minimizing a functional

T, ka2
F:jIT Q+(T”—1)”-Q- UT-T) (7)

k,
- 0 [1-U(T- T,)]}dT

without any constraints, where A is the Lagrange multiplier
and U(T — T)) is a unit step function whose value is 1 if
T = T, and 0 otherwise.

Using the method of calculus of variations, the optimal
heat current distribution to minimize F can be found as a
function of temperature when the end and the joint tempera-
tures are given.

7
A — [k
Al ‘/krT'f T’ dT for T<T,

L,
anl( T) = L (8)

1 | R
IT\/(T_ TH)pzkz for T = T_]

The optimal dimensions of the metal part to minimize F
are given by the relation

T4

IR R
.Al, opt - I pZT( TH - T) ( )

7y

The optimal heat current distribution, Equation (8). is
now substituted into Equation (5) and the minimum
refrigerator power is finally obtained.

N

7, -
A vk,
(‘/Vlcf)nnn = 7—‘H L: f Tl dT (]0)

7.

1 1 |
21 - N
¥ j T \/(T Tn)p_k_dT

Equation (10) represents the minimum refrigerator
power in case the Carnot refrigerators are optimally distrib-
uted and the dimensions of the metal part are optimally
designed. The first term is the minimum power required to
cool the HTS part, which is proportional to the cross-sec-
tional area and inversely proportional to the length, but is
independent of the current since no heat has been assumed
to be generated. The second term is the power required to
cool the metal part, which is proportional to the current
level. The mathematical exactness of Equation (10) can be
confirmed by comparing its two limiting cases with the pre-
viously published works. When the joint temperature is
equal to the cold end temperature, Equation (10) becomes

Ty

| 1 1
(Weetdmin = 21'Tnj T \/<T - T”)szsz (1)

7.

which is identical to the minimum power to refrigerate a
metallic lead, as derived by Hilal'?. If it is assumed that
the joint temperature is equal to the warm end temperature
and the HTS is still superconducting, Equation (10)
becomes

Al Ve
(vvn:l’)min = TH L] T dT (12)

which is also identical to the well-known result by Bejan
and Smith'’, because the optimization of the ‘room-tem-
perature’ superconductor leads would be the same as that
of the mechanical supports for cryogenic apparatus from
the thermodynamic point of view.

In published reports about current lead'~**3 the
refrigerator power per unit operating current is more sig-
nificant in the design and analysis. The minimum refriger-
ator power per unit current can be expressed as

N

7

W) L [ V&
= 13
( 1 / min T“ JIL] J T dT ( )

us
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l ! l
* 2,[ r \/(T_ Tn)pZI\:dT

where J, is the current density at the HTS. It is very worth
while noticing in Equation (13) that the minimum power
per unit current is a function of J,, L, and T, only, when
the material properties and the end temperatures are given.

The minimum refrigerator power per unit current has
been calculated with Equation (13) for various values of
the current density and the joint temperature in a copper +
Bi2223 binary lead. Figure 2 shows contours of the mini-
mum power per unit current on a current density vs. joint
temperature (J,-T,) diagram for L, = 20 cm. The thermal
conductivity of Bi2223 is taken from Herrmann et al.* and
the properties of copper are taken from Maehata et al.'* for
RRR = 60. The cold and warm end temperatures of the
lead are fixed at 4 K and 300 K, respectively, throughout
this paper. Generally speaking, the refrigerator power per
unit current decreases as the current density or the joint
temperature increases. However, when the joint tempera-
ture is low or the current density is high, the power per
unit current is almost independent of the current density
since the cooling load for the HTS or the first term in Equ-
ation (13) is relatively small. On the contrary, when the
joint temperature is high or the current density is low, the
first term is dominant and the current density is relatively
more significant in the total power per unit current than the
joint temperature.

Since Equation (13) has been derived with the assump-
tion that the HTS does not generate heat, the superconduc-
tivity should be confirmed by incorporating the critical
properties of the HTS, which will establish the final process
of the optimization. The current density of Bi2223 can be
represented reasonably well by a linear function of tempera-
ture'?,

T
J(‘:J(‘n(l - T(‘) (14)

where J is the critical current density at O K and varies
over a wide range, depending upon the size, the shape and
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Figure 2 Contours of absolute minimum refrigerator power
per unit current and critical current density on current density
(J;) vs. joint temperature diagram (T,) for Cu + Bi2223 when L,
=20cm and Jg, = 10 000 A/cm?
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the fabrication method as well as the applied magnetic field.
For the purpose of more quantitative discussions in this
paper, it is assumed that J, = 10000 A/cm® and T =
104 K for Bi2223 at zero magnetic field'' and Equation
(14) is plotted on the J,-7, diagram of Figure 2. Clearly,
there exist unique optimal values in the current density and
the joint temperature, to minimize the refrigerator power
per unit current while the HTS is superconducting. as indi-
cated by the dot. At higher joint temperatures and smaller
current densities than the optima, more refrigerator power
per unit current is required because of greater refrigerator
power to cool the HTS. At lower joint temperatures and
larger current densities, more power per unit current is also
required because of greater power to cool the metal part of
the lead. The absolute minimum of the refrigerator power
per unit current is about 0.0569 W/A, which is only 24%
of the power per unit current required to refrigerate the
optimized metal lead as given by Equation (11). The corre-
sponding optimal values of J, and T, are 481 A/cm” and
99 K, respectively. It should be remembered that this
refrigerator power per unit current is the absolute minimum
as a thermodynamic limit for the Cu + Bi2223 lead when
every other design parameter has been optimized except the
length and the critical current density for Bi2223.

The above procedure has been repeated for various
values of L, and J, of Bi2223 and the results have been
plotted in Figure 3. The absolute minimum refrigerator
power per unit current decreases as L, or Jg, increases.
However, the minimum power does not vary significantly
if L, is greater than about 10 cm, which means that the
length of the HTS does not need to be very long as well
as it is optimally cooled. It is also noticed that the minimum
power is not very sensitive to the critical current density
of the HTS if Jo, is greater than about 10 000 A/cm?®. As
L, is reduced to zero, the minimum power per unit current
approaches 0.222 W/A regardless of the current density
because it is the absolute minimum for the optimized cop-
per lead as given by Equation (11). If L, or J, is infinitely
large, the minimum power per unit current is asymptotically
reduced to 0.0516 W/A, which can be directly calculated
by the asymptotic behavior of Equation (13),

Ty

W,.C.) = 2T, l\/(l l) kdT (15
[ / min - " T T TH p2 : ‘)

T
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0.05 b el A A o A
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Figure 3 Absolute minimum refrigerator power per unit cur-
rent as a function of the HTS (Bi2223) length for various values
of critical current density



Thermodynamic optimization of conduction-cooled HTS current leads: H.-M. Chang and S. W. Van Sciver

Table 1 Summary of the refrigerator power per unit current for the optimized Cu + Bi2223 current leads

Critical current density  Absolute minimum with distributed refrigeration Minimum in 2-stage refrigeration (W/A)
at 0 K {A/cm?) (W/A}
Li=0 L, =20cm * L,=0 L, =20cm Ly=x
1000 0.0695 0.122
10 000 0.222 0.0569 3.10° 0.0907
100 G600 0.0534 0.0806
% - 0.0516 - 0.0759
aSingle-stage cooling at 4 K.
which is the simple case that no refrigerator power is Tu
required for the HTS and the cold end temperature of the r Yy = _ 2| pkodT
optimized metal lead is the critical temperature of the HTS. 5 (@1 = Q) == I | poks (19)

Some of the meaningful values in the minimum refrigerator
power per unit current for the Cu + Bi2223 binary lead are
summarized in Table I.

Optimization of two-stage refrigeration

The distributed Carnot refrigerators in the previous section
were useful in finding the absolute minimum as a thermo-
dynamic limit, but could not be realized in practice. In most
practical cases for the conduction-cooled superconducting
systems, a two-stage refrigerator should be employed'*'"
The joint of the two parts is cooled by the first stage of the
refrigerator and the cold end of the HTS lead is cooled by
the second stage, as shown in Figure 4. The refrigerator
power for the cooling can be generally expressed as,

_(Tw ),,Q};, Ty o
W“‘"‘(Tl_ 1,'F0Ml_+(rj Y Fom, (16)

where FOM is the figure of merit, defined as the ratio of
actual coefficient of performance to Carnot coefficient of
performance.

For the HTS part of the lead, the heat current is constant
along the axis and is identical to the cooling load at the
cold end, since no heat is generated.

7

A
OL=0Q =5+ fkl-dT (17)
L,

7.

For the metal lead, the change of the heat current is due
to the generated heat as shown in Figure 4 or dQ = — dQ,...,
which is substituted into Equation (3).

dQ:—’—)?—’fQ?de (18)

Equation (18) is multiplied by Q on both sides and inte-
grated over the metal length.

Cold end Joint 40 on Warm end
T, T, Ty

: : Metal 2) «— 7
0+« |« Q+dQ +

or ¢ ‘Ql Qn

Figure 4 Binary current lead cooled at cold end and at joint by
a two-stage refrigerator

7y

which can be rearranged for the heat current from the metal
lead to the joint Q.

I

Ty

Q.= ,/0n+ 2Ffpzk:‘dT (20)

7y

It is immediately observed that Q, has its minimum when
the heat current at the warm end, Qy, is zero. If @y, has a
positive value, Q, is larger than the minimum because of
the excessive heat conduction through the metal lead. If Oy,
has a negative value on the contrary, @, is also larger
because of the excessive heat generation. The axial tem-
perature gradient should be zero at the warm end when
the heat conduction and the heat generation are optimally
balanced. This condition for the minimum is identical to
the case of the conventional vapor-cooled metal lead'”.

The minimum heat current to the joint is now found in
a closed form by letting Qy; = 0.

(21)

At any arbitrary axial Jocation of the metal lead, the opti-
mal heat current can be obtained as a function of tempera-
ture by integrating Equation (18) from the point to the
warm end and letting O, = 0.

(22)

T

from which the optimal dimensions of metal are found.

Ty

(A) =3 f a7 (%)

7y

Tu
jpz( Tk(7)-dT
a

Equations (21) and (23) are very simple and useful
expressions for the conduction-cooled metal lead, but have
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never been reported as far as the present authors are aware.
The similar optimal conditions were reported in previous
publications with simple assumptions for the material
properties, which could be derived as special cases of these
general expressions. If the electrical resistivity and the ther-
mal conductivity are assumed to be constant, Equations
(21) and (23) are reduced to

(Q2)min = IV’2P2/\'2( Ty-Ty) (24)
and

(Lz) 1 \/2k3(T - 25
AZ opt B 1 P2 . ! -

respectively, which were described by Seol and Hull”. For
materials that obey the Wiedemann—Franz law, p-k = LT,
Equations (21) and (23) are directly integrated.

(Q)in = NL(T7, ~ T7) (26)
and

’I'H
Lv) l k-
P = | et e T (27)
(Az, o J VLo(TH - T

Ty

as Yang and Pfotenhauer® mentioned. The minimum coo-
ling load at joint is obtained from Equations (17) and (21).

Ty

A
2Jp3k3~dT - L' kar (28)

7y us

(QJ )min =1/

The refrigerator power required for the two-stage cooling
is associated with the performance characteristics of the
refrigerator, represented by the FOM’s in Equation (16).
The optimization of the lead cooled by a two-stage Carnot
or reversible refrigerator is considered first and some
aspects of the optimization of the lead cooled by actual
refrigerators are discussed later.

The minimum refrigerator power with a two-stage Car-
not refrigerator is derived by substituting Equations (17)
and (21) into Equation (16) and setting the two FOM’s
to unity.

Ty
W, =T ( : I)A' ky-dT
( rcl')min — 4H TL T_]’ L] |
us
Ty
+ (] : 2J’ k dT:I (29)
T, T P2K2

7

Equation (29) is divided by the current and the minimum
refrigerator power per unit current is finally found.

W i 1) |
: = - : k,-dT
( [ )nnn THli(’rL TJ JILI J ]d
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|
+ (T. (30)
which is a function of J;, L, and 7, only, as in Equation
(13). The minimum in Equation (30) has been obtained by
optimizing the dimensions of the metal lead and assuming
a reversible refrigerator.

In the same manner as in the previous section, the mini-
mum refrigerator power per unit current has been calculated
using Equation (30) and contours of the constant power per
unit current have been plotted on a J,-T, diagram as shown
in Figure 5, for a copper + Bi2223 binary lead with L,
equal to 20 cm. The contour curves have basically the same
shapes as in Figure 2, even though Equation (30) may be
completely different from Equation (13). The physical
meanings for the shapes of the curves are also the same as
in Figure 2. However, it can be observed that the minimum
power per unit current in Figure 5 increases more sharply
as the joint temperature decreases and that the curves at
low J, region rise up again on J,-7; diagram as the joint
temperature increases. These two behaviors are obviously
due to more power required in the two-stage refrigeration
than in the distributed refrigeration, particularly at very low
temperatures. The concave shape of the curves at low J,
region indicates that for a constant current density, the opti-
mum joint temperature to minimize the power per unit cur-
rent should be significantly lower than the critical tempera-
ture, as discussed by Yang and Pfotenhauer®.

The critical current density as a function of temperature
has been plotted in Figure 5, again with the assumption
that Ji, = 10000 A/cm? and T = 104 K for Bi2223'". It
is also clear in the two-stage refrigeration that there exist
unique optimal values in the current density and the joint
temperature, to minimize the refrigerator power per unit
current while the HTS is superconducting, as indicated by
the dot. When J, = 577 A/em” and 7, = 98 K, the power
per unit current in two-stage refrigeration has a theoretical
minimum of 0.0907 W/A, which is approximately 59%
larger than the absolute minimum with the distributed
refrigeration for the same length of the HTS.

The above procedure has been repeated for various

1 05 E T
E (‘v‘ml/[)mm
=0.075 W/A

Current density J, (A/cmz)

n a 1 4
10 0 20 40 60 80 100 120

Joint temperature T, (K)

Figure5 Contours of minimum two-stage refrigerator power
per unit current and critical current density on current density
(J,) vs. joint temperature diagram {T,) for Cu + Bi2223 when L,
=20 cm and Jg, = 10 000 A/cm?
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values of L, and J¢, of Bi2223 and the results have been
plotted in Figure 6. It is observed again in two-stage
refrigeration that the minimum refrigerator power per unit
current does not decrease significantly as L, increases
beyond about 10cm or J, increases beyond about
10 000 A/ecm®. As L, decreases to zero, the minimum power
per unit current approaches to 3.10 W/A, which is the mini-
mum power for the single-staged cooling of the optimized
copper lead as given by

7.7

If L, or Jo, is infinitely large, the minimum power per
unit current is asymptotically reduced to 0.0759 W/A,
which can be directly calculated by the asymptotic behavior
of Equation (30),

AR
I min T(‘

which is the simple case that the refrigerator power to cool
the cold end is negligible and the joint temperature is the
critical temperature of the HTS. It can be also shown that
both of the optimal values for J, and 7, decrease as L,
increases. The minimum power per unit current for the two-
stage refrigeration is summarized and compared with the
absolute minimum in Table 1.

The preceding optimization for the two-stage refriger-
ation of the binary lead is a theoretical limit, because the
refrigerator has been assumed to be reversible and the HTS
is marginally superconducting at the optimal conditions as
shown in Figure 5. It is beyond the scope of this paper
to include the detailed characteristics of actual two-stage
refrigerators, the detailed critical properties for various
HTS materials or the thermal stability of the conduction-
cooled HTS. On the other hand, that those three essential
aspects should be considered in the practical design are
shortly discussed here in order to highlight the usefulness
of the presented optimization method.

If the FOM’s are known for the actual two-stage refriger-

(32)

Te

—a—] = 1,000 Alcm’

— 10,000
—a— 100,000

] . .
......... mﬁmty

0.5

Minimum power per current (W/A)

0.1

0.05

Length of HTS L, (cm)

Figure 6 Minimum two-stage refrigerator power per unit cur-
rent as a function of the HTS (Bi2223) length for various values
of critical current density

ator, the minimum refrigerator power per unit current for
the optimized dimensions of the metal lead can be derived
from Equations (16), (17) and (21).

Ty

(WM) o (T,, 1)' T .
b 1 min —FOMl Tl. ‘IILI 1 (~~)

7.

1 (’T” )(
+ -1
FOM, \T,

Generally, the FOM of a cryogenic refrigerator depends
on the cold head temperature, the type of the refrigeration
cycle and the capacity of the refrigerator. The typical values
can be found in a range between 1/10 and 1/30 for most
of the refrigerators that are available for the cooling of the
binary current leads™**'*. With these values and Equation
(33), the actual refrigerator power per unit current can be
calculated and plotted on a J,-T; diagram in the same way
as in Figure 5. The magnitudes of the power per unit cur-
rent would be greater by 10 to 30 times than those in Figure
5 and the shape of the contour curves would be more con-
cave at a low J, region if FOM, is smaller than FOM,.

The critical properties of the HTS are strongly dependent
on the size, the shape and the fabrication method as men-
tioned above. Once the critical current density is given as
a function of temperature for a specific HTS lead and under
a specific magnetic field, it is plotted on the J,-T, diagram
together with the contours of the actual refrigerator power
per unit current so that the optimal point may be determined
to minimize the power per unit current. Because of the
shape of the contours, a smaller critical current density
would result in a greater refrigerator power and a lower
optimum joint temperature. The reader is reminded that the
critical current density is involved in this step of the optim-
ization separately from the thermophysical or the electri-
cal property.

Because of the nature of the superconductivity, the theor-
etical optimum to minimize the refrigerator power per unit
current is always determined at a marginally supercon-
ducting state as shown in Figure 5. In practice, the HTS
current leads should be designed such that the current den-
sity and the joint temperature are lower than their theoreti-
cal optima, in order to be stable for any thermal disturb-
ances. The presented optimization method could be very
useful also in finding the design point of the practical cases.
On the J|-T; diagram, the best design points should be
maintained in a certain distance from the critical line and
still have a minimum refrigerator power per unit current.
The points could be located on a curve which intersects
the theoretical optimum point and is perpendicular to the
contour curves.

Tn 7

|
2| pokordT — »
f”* AT, Jk' dT)

7y Ti

Conclusion

A theoretical optimization has been performed for conduc-
tion-cooled binary (metal + HTS) current leads. In the first
part of the optimization, it has been successfully shown by
analytical and graphical methods that the refrigerator power
per unit current has an absolute minimum as thermodyn-
amic limit. The absolute minimum is obtained for a given
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length of the HTS lead, when the lead is cooled by opti-
mally distributed refrigerators along its length and the cur-
rent density of the HTS has its critical value at an optimal
temperature for the joint of the two parts. In the second
part, the two-stage cooling of the current lead has been
optimized by similar analytical and graphical methods. A
theoretical minimum power per unit current for the two-
stage refrigeration is also found for a given length of the
HTS lead, when the dimensions of the metal lead are optim-
ized and the current density of the HTS has its critical value
at an optimal temperature for the joint. Some general
aspects in practical design are also discussed in association
with the characteristics of actual refrigerators and the criti-
cal properties of the HTS.
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