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ABSTRACT

An optimization theory for current leads passing through a closed vapor-filled space is
introduced. These leads are applicable mainly to HTS power systems where liquid nitrogen
is continuously refrigerated by a cryocooler. The design of such leads is basically similar to
that of conduction-cooled leads, because no boil-off gas flows out of the system. The
purpose of this study is to determine whether the cooling by natural convection of vapor
requires any modification in optimizing the lead design. In the case that the leads are
located in a wide vapor space (called boundary layer flow), the energy balance equations
for the lead and the surrounding vapor are solved by the method of perturbation series, as
they are weakly coupled by natural convection. The analytical solution shows that the
optimal lead parameter does not need to be changed in spite of the convective cooling. In
the case of the leads passing through a narrow vapor space (called fully developed flow),
on the other hand, the axial conduction of surrounding wall is strongly coupled by natural
convection and the lead parameter should be optimized in a modified way. The suggested
design conditions are presented in terms of the lead parameter for various RRR values of
copper.

INTRODUCTION

Many HTS (high temperature superconductor) power devices are required to use
liquid nitrogen as a cooling medium and at the same time to employ a cryocooler for
continuous operation. HTS transformers, HTS fault current limiters, and the terminals of
HTS transmission cables are some examples under contemporary development [1-4].
Current leads for these closed systems may have a few different options for the cooling
method, depending upon the cryostat structure and the technique of electrical insulation.

admin
©
2004
American
Institute
of
Physics
0-7354-0186-1/04/$22.00

admin
Cryogenic
Engineering
Conference
-
CEC,
Vol.
49,

admin
edited
by
J.
Waynert
et
al.

admin
CP710,

admin
Advances
in
Cryogenic
Engineering:
Transactions
of
the

admin
944



(a) Re-entry cryostat and leads
through a wide vapor space

(b) Suspended cryostat and leads
through vapor-filled neck

(c) Suspended cryostat and
conduction-cooled leads

FIGURE 1. Schematic of three configurations of zero boil-off cryostat refrigerated by a cryocooler

FIGURE 1 shows schematically three different configurations of a zero boil-off
cryostat and the corresponding arrangement of the current leads. The most convenient
cryostat for assembly and repeated access to the HTS components is the so-called re-entry
type shown in FIGURE l(a), where the wall of the inner vessel is connected directly to the
top flange at room temperature. This type is especially useful when the cryostat is
constructed with non-metallic materials as in HTS transformers [2,3]. The leads in these
cryostats are located in a wide vapor space above the liquid level.

Heat leak down the wall and through the wide vapor space may be significantly
reduced if the inner vessel is suspended by slender supports. For suspended cryostats, we
have at least two options for cooling the leads as shown in FIGURE l(b) and l(c); the leads
may be located in a vapor-filled neck or conductively cooled in vacuum. The main
advantage of installing the neck for the leads is that the cold feedthrough required in the
conduction-cooled leads may be eliminated.

The optimization of current leads in these three cases is basically similar in that no
boil-off gas flows out of the system. In the cases of FIGURE l(a) and l(b), however, there
exists a certain amount of cooling by natural convection of vapor, as the lead surface
always has temperatures higher than the surrounding vapor. This study proposes to answer
the questions whether the natural convection in a closed vapor space affects the standard
optimization scheme [5,6] and how the penalty caused by the vapor-filled space can be
minimized. The two specific cases of FIGURE l(a) and l(b), respectively called the
boundary layer flow and the fully developed flow, are investigated in this paper.

BOUNDARY LAYER FLOW (WIDE VAPOR SPACE)

Perturbation Method

We first consider the leads passing though a wide vapor space as shown in FIGURE
l(a), where the effect of convective cooling is meager. Since the lead surface in contact
with vapor is very small, the convection by the buoyancy force is active only within a
boundary layer around the leads. Heat transfer through the vapor outside of the boundary
layers is essentially by conduction only, as the top is warmer than the bottom.
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The energy balance equations and the boundary conditions can be written in terms of
the lead and vapor temperatures as

-̂ -.H
«(r,-r,)=o ,2)

j;(o) = r,(o)=7i 7;(t)=r,(i.)=T, (3)
where the vertical distance, z, is measured from the liquid level, and the subscripts, / and g,
denote the lead and vapor, respectively. Thermal conductivity, k, and electrical resistivity,
p, are the temperature dependent properties, and A and P are the cross-sectional area and
the axial perimeter, respectively.

The heat transfer coefficient for natural convection on a lead, /z/, is very difficult to
calculate or measure with accuracy, mainly because the surface temperature is not axially
constant. We predict, however, using a correlation for vertical cylinders [7], that the
coefficient is in the range of 4-5 W/m2-K for typical conditions discussed later. In fact, this
value is so small that the conduction through the leads is dominant over the convection to
vapor. In other words, the third term in equation (1) plays only a minor role in the energy
balance. This implies that the problem may well be solved analytically by the method of
perturbation series [8].

The first step is to define a small dimensionless parameter, called the Biot number.

£=^«l (4)
^/

which is also the condition that justifies the one-dimensional formulation in equation (1). In
equation (4), the thermal conductivity of the lead, &/, can be taken at any reference
temperature (for example, at room temperature). Next, the temperatures of the lead and
vapor are each expressed as a perturbation series.

Tl=Tim+s-Tim+e2-Tl(2,+-- (5)
T

g=T^+£'Tgm+£2-Tg(2)+- (6)

The zeroth-order solutions (or the leading terms in the series) with subscript (0) are the
temperatures without the convective cooling, and can be simply obtained by setting e = 0 .

r/m(0) = rt Tm(L) = TH (7)

The /th-order terms ( / > 1 ) are derived by substituting equations (5) and (6) into equations
(1), (2), and (3) and setting the coefficients of £' equal to 0. The equations are rearranged
in a recurrence form.
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where the /th-order solutions can be found by integrating the (M)th-order solutions. It is
noted in equations (9) and (10) that the boundary conditions are homogeneous and the two
/th-order temperatures are not coupled. Even though the number of perturbation terms for a
given accuracy may depend on the magnitude of £ , only a few terms are sufficient in most
converging problems [8].

Optimization for Wiedemann-Franz Materials

The temperature-dependent properties of lead materials are available from several
sources [9,10]. In the temperature range 77-300 K, the properties of copper can be
reasonably expressed as simple functions that obey the Wiedemann-Franz law.

where the Lorenz number, L0, is taken as the effective value, 2.41 x 10"8 W-Q/K2 [9], for a
better accuracy. For simplicity, we first consider the case of n = 1, then discuss more
general cases. If n is taken to be 1, the thermal conductivity of the lead material is constant.
If the thermal conductivity of the vapor is also assumed to be a constant, and the
perturbation solutions are found in closed-form expressions.

(13)
" " " I " ' / I k /\ - . - . x ,

where

^TT" (14)
k,A,

T H ( z s infe^j TLT z smb(L-.
b1\L smbL j b2\ L sinbLV ' ( ' (15)

H—-(L-;

The higher order terms are omitted due to space limitation.
The sum of the heat leaks through the lead and vapor per unit current can be obtained

from equations (12) and (13),

( } ( 2 )
V H L) V }smbL IL

The first-order terms have been eliminated, as the decrease of the cooling load for the lead
is identical to the increase of the cooling load for the vapor. In other words, the amount of
heat rejected from the lead is eventually delivered to the cold end through the vapor.
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FIGURE 2. Vertical temperature distributions for the leads and vapor without (unperturbed) and with
(perturbed) natural convection of vapor. (bL =1.331, htP/ki = 0.000428, &/AAA = 1-37)

The optimal condition to minimize the cooling load can be found from equation (16)

TcosbL- — or -1A1 Joi

*/ -i TL~L— — -cos (17)

which is exactly the same as for the conduction-cooled leads [5,6]. The key point of this
result is that the individual loads for the lead and the vapor are affected by convection, but
the sum of the loads is not, insofar as they are weakly coupled.

FIGURE 2 shows an example of the axial temperature distributions of the lead and
vapor, with and without the perturbation terms. In the calculation, the dimensionless
parameter, bL, is taken as 1.311, which is an optimum for TH = 300 K and TL = 77 K from
equation (17). By adding the effect of the convection as perturbation terms, the difference
between the two temperatures is reduced, and the temperature gradient at z = 0 becomes
smaller for the lead, but larger for the vapor.

The optimal condition and the corresponding load can now be generalized for the
temperature-dependent conductivities [5,6]:

(18)

(19)

FULLY DEVELOPED ASYMPTOTE (VAPOR-FILLED NECK)

The other extreme case considered here is an asymptote that the leads pass though a
vapor-filled neck as shown in FIGURE l(b) or the effect of convective cooling is very
significant. In this case, the thickness of boundary layer is greater than the gap between the
lead and the neck wall, so the vapor in the narrow gap generates a fully developed (or
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circulating) flow by natural convection. The energy balance equations and the boundary
conditions for the lead and the neck wall (subscript w) are written as

^° (2o)

TW(L) = TH (22)

where hi is the surface-to-surface heat transfer coefficient. In contrast to the previous case,
the two solid temperatures are strongly coupled by active heat transfer.

In the limit of fully effective heat transfer, the two temperatures become identical, and
the energy balance can be simplified by adding equations (20) and (21) and setting
r ,« r w «r toget

A^(i + e)^J+^l«o T(0) = TL T(L) = TH (23)

where

Equation (23) has the same shape as the energy balance of the conduction-cooled leads,
except that there is an additional cross-sectional area for heat conduction. Therefore the
optimal condition and the corresponding load can be expressed approximately by including
the effect of the additional area as a constant. For the Wiedemann-Franz materials,

(26)

In comparison with the conduction-cooled leads, the optimal lead parameter is greater by
the factor ofVl + £ , and the cooling load is increased by the same factor according to the
penalty of installing the neck.

DISCUSSION

FIGURE 3 is a plot of the cooling load per unit current as a function of the lead
parameter (IL/A) for various cases, demonstrating the significance of the present analysis.
As a reference, the curve at the bottom is for the conduction-cooled leads (e = 0). As is
well known, the lead parameter has a unique optimum indicated by the dot, which is 34.1
kA/cm for copper leads with RRR = 60, and the corresponding cooling load (i.e. the
minimum) is 42.0 W/kA.

The top curve noted by "boundary layer flow" is the cooling load of the leads and
vapor, when one pair of 200-A leads pass through a vapor space with diameter of 0.95 m
and a height of 0.4 m. As also indicated by the dot, the optimal lead parameter is the same
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FIGURE 3. Cooling load of leads per unit current as a function of the lead parameter (IL/A) for boundary
layer flow and fully developed flow in comparison with conduction-cooled leads. (Copper with RRR - 60, TH
= 300 K, TL = 77 K)

(34.1 kA/cm) as the conduction-cooled leads, even though the minimum load may be
greater by 14.4 W/kA. It is clear from equation (19) that this difference in the cooling loads
is the conduction through the vapor. However, the actual heat from vapor to liquid must be
greater than this value because of the convection from the lead, but the cooling load of the
leads are also smaller by the same amount as explained earlier by FIGURE 2. It is also
important in a practical load calculation to add the heat conduction through the wall of
liquid vessel, but we will not discuss this further, because the thermal coupling of the wall
and vapor by convection is even weaker and the addition of the conduction load is trivial.

A group of curves noted by "fully developed flow" are the cooling loads of the leads
with the vapor-filled neck, for various values of 8 defined by equation (24). As 8 increases,
the contribution of the neck conduction becomes more and more important so that both the
cooling load and the optimal lead parameter yielding the minimum load tends to have a
greater value. The key point here is that the increase of the cooling load, or the penalty of
installing the neck can be reduced by a modified lead parameter. The magnitude of the
reduction does not seem to be considerable from FIGURE 3, yet the optimal design is still
of significant value in preparation for any off-design operation. At the same time, these
quantitative results should be useful in the design consideration of trade-off between the
practical convenience and the absolute minimum of cooling load.

Based upon the optimization theory described above, FIGURE 4 presents the optimal
lead parameter as a function of liquid temperature for various RRR values of copper, as
some of the HTS power devices are operated at temperatures lower than 77 K.

CONCLUSIONS

The questions regarding the current leads passing through a closed, vapor-filled space
are clearly answered through this study. When the leads are located in a wide vapor space
or the natural convection is characterized by boundary layer flow, the optimal lead
parameter is the same as for the conduction-cooled leads, but the total cooling load is
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FIGURE 4. Optimal lead parameter as a function of liquid temperature with various RRR values of copper
for boundary layer flow and fully developed flow.

higher. When the leads pass through a narrow vapor space, or the lead temperature is
strongly coupled with the nearby wall by fully developed flow, the cooling load can be
closer to the pure conduction-cooled leads, but the optimum lead parameter must be
modified.
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